Other Semen microbiome may impact male fertility. A small group of microorganisms may be influencing sperm motility (Jan 2024, n=73) Semen microbiota are dramatically altered in men with abnormal sperm parameters

Michael Harrop

Active member
Jul 6, 2023


There has recently been an explosion of studies implicating the human microbiome in playing a critical role in many disease and wellness states. The etiology of abnormal semen analysis (SA) parameters is not identified in 30% of cases; investigations involving the semen microbiome may bridge this gap. Here, we explore the relationship between the semen microbiome and alterations of sperm parameters. We recruited men presenting for fertility evaluation or vasectomy consultation with proven biological paternity. SA and next generation sequencing was performed. Differential abundance testing using Analysis of composition of Microbiota with Bias Correction (ANCOM-BC) was performed along with canonical correlational analysis for microbial community profiling.

Men with abnormal (N = 27) sperm motility showed a higher abundance of Lactobacillus iners compared to those with normal (N = 46) sperm motility (mean proportion 9.4% versus 2.6%, p = 0.046). This relationship persisted on canonical correlational analysis (r = 0.392, p = 0.011). Men with abnormal sperm concentration (N = 20) showed a higher abundance of Pseudomonas stutzeri (2.1% versus 1.0%, p = 0.024) and Pseudomonas fluorescens (0.9% versus 0.7%, p = 0.010), but a lower abundance of Pseudomonas putida (0.5% versus 0.8%, p = 0.020), compared to those with normal sperm concentration (N = 53).

Major limitations are related to study design (cross-sectional, observational). Our results suggest that a small group of microorganisms may play a critical role in observed perturbations of SA parameters. Some of these microbes, most notably Lactobacillus iners, have been described extensively within other, fertility-related, contexts, whereas for others, this is the first report where they have potentially been implicated. Advances in our understanding of the semen microbiome may contribute to potentially new therapeutic avenues for correcting impairments in sperm parameters and improving male fertility.
However, the findings indicate that not every member of the same closely related group may affect fertility in the same way, whether positively or negatively. In other words, even closely related microbes may not always have the same direct correlation to fertility.
Format correct?
  1. Yes
Last edited: