Michael Harrop
Active member
https://www.cam.ac.uk/research/news/mothers-gut-microbiome-during-pregnancy-shapes-babys-brain-development
https://www.sciencedirect.com/science/article/pii/S2212877824001352
https://www.sciencedirect.com/science/article/pii/S2212877824001352
Highlights
- B. breve in maternal gut alters fetal brain cell cycle and axogenesis genes.
- B. breve in maternal gut alters fetal brain metabolism, reducing 10 key metabolites.
- B. breve in maternal gut modifies nutrient transporters in fetal brain.
- B. breve impacts mitochondrial TCA cycle, HIF and Wnt-β-catenin in fetal brain.
Abstract
Background
Recent advances have significantly expanded our understanding of the gut microbiome's influence on host physiology and metabolism. However, the specific role of certain microorganisms in gestational health and fetal development remains underexplored.
Objective
This study investigates the impact of Bifidobacterium breve UCC2003 on fetal brain metabolism when colonized in the maternal gut during pregnancy.
Methods
Germ-free pregnant mice were colonized with or without B. breve UCC2003 during pregnancy. The metabolic profiles of fetal brains were analyzed, focusing on the presence of key metabolites and the expression of critical metabolic and cellular pathways.
Results
Maternal colonization with B. breve resulted in significant metabolic changes in the fetal brain. Specifically, ten metabolites, including citrate, 3-hydroxyisobutyrate, and carnitine, were reduced in the fetal brain. These alterations were accompanied by increased abundance of transporters involved in glucose and branched-chain amino acid uptake. Furthermore, supplementation with this bacterium was associated with elevated expression of critical metabolic pathways such as PI3K-AKT, AMPK, STAT5, and Wnt-β-catenin signaling, including its receptor Frizzled-7. Additionally, there was stabilization of HIF-2 protein and modifications in genes and proteins related to cellular growth, axogenesis, and mitochondrial function.
Conclusions
The presence of maternal B. breve during pregnancy plays a crucial role in modulating fetal brain metabolism and growth. These findings suggest that Bifidobacterium could modify fetal brain development, potentially offering new avenues for enhancing gestational health and fetal development through microbiota-targeted interventions.
- Format correct?
- Yes